Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guo-Ren Yue,* Yu-Zhen Shi, Min Lin and Lei Feng

Chemical Department, Key Laboratory of Resources and Environment Chemistry of West China, Hexi University, Zhangye 734000,
People's Republic of China

Correspondence e-mail: hxuygr@sohu.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.061$
$w R$ factor $=0.192$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis\{2-[3-(cyclohexylammonio)propyliminomethyl]phenolato\}dithiocyanatocobalt(II)

The title Schiff base compound, $\left[\mathrm{Co}\left(\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}\right)_{2}(\mathrm{NCS})_{2}\right]$, is centrosymmetric with the octahedrally coordinated $\mathrm{Co}^{\mathrm{II}}$ atom lying on an inversion center. The Co atom is coordinated by two N atoms and two O atoms from two 2-[(3-cyclohexylaminopropylimino)methyl]phenolate Schiff base ligands and another two N atoms from two thiocyanate anions. In the crystal structure, the molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ intermolecular hydrogen bonds, forming a polymer extending in the b-axis direction.

Comment

Cobalt complexes are of great interest in coordination chemistry in relation to catalysis and enzymatic reactions, magnetism and molecular architectures (Billson et al., 2000; Kotera et al., 2003; Fritsky et al., 2003). As an extension of work on the structural characterization of cobalt complexes, the title mononuclear cobalt(II) complex, (I), is reported here.

(I)

Compound (I) is an electronically neutral mononuclear centrosymmetric cobalt(II) compound (Fig. 1), which is isostructural with the copper(II) complex reported by Nie (2004). The $\mathrm{Co}^{\mathrm{II}}$ atom has an octahedral geometry and is sixcoordinated by two Schiff base ligands and two thiocyanate anions. The Schiff base acts as a bidentate ligand and chelates to atom Co 1 through the O atom and imine N atom. The thiocyanate ligands are monodentate and coordinate to atom Co1 via the N atoms. All the bond lengths and angles are in normal ranges (Table 1). As expected, the cyclohexyl group adopts a chair conformation to minimize steric effects.

In the crystal structure, the molecules are linked by N $\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, forming a polymer chain extending in the b-axis direction (see Table 2 and Fig. 2).

Experimental

Salicylaldehyde ($0.1 \mathrm{mmol}, 12.2 \mathrm{mg}$), N-cyclohexylpropane-1,3-diamine ($0.1 \mathrm{mmol}, 15.7 \mathrm{mg}$), ammonium thiocyanate (0.2 mmol , $15.2 \mathrm{mg})$ and $\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 24.9 \mathrm{mg})$ were

Received 7 March 2005 Accepted 15 March 2005 Online 25 March 2005
dissolved in methanol (15 ml). The mixture was stirred at room temperature for 1 h to give a clear brown solution. After keeping the solution in air for 12 d , brown block-shaped crystals were formed.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}\right)_{2}(\mathrm{NCS})_{2}\right]$
$M_{r}=695.83$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=10.912$ (7) A
$b=7.797$ (5) \AA
$c=20.777(13) \AA$
$\beta=96.899$ (13) ${ }^{\circ}$
$V=1754.9(19) \AA^{3}$
$Z=2$
$D_{x}=1.317 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 755
reflections
$\theta=2.8-23.4^{\circ}$
$\mu=0.65 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, brown
$0.29 \times 0.17 \times 0.11 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.835, T_{\text {max }}=0.932$
7131 measured reflections

Refinement

Refinement on F^{2}
2975 independent reflections
1337 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.101$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-10 \rightarrow 12$
$k=-9 \rightarrow 7$
$l=-12 \rightarrow 24$

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0889 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.54 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.55 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 1$	$2.031(4)$	$\mathrm{Co} 1-\mathrm{N} 3$	$2.127(6)$
$\mathrm{Co} 1-\mathrm{N} 1$	$2.087(5)$		
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$	180	$\mathrm{~N} 1-\mathrm{Co} 1-\mathrm{N} 3^{\mathrm{i}}$	$92.9(2)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$91.3(2)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 3$	$88.7(2)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$88.7(2)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 3$	$87.1(2)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	180	$\mathrm{~N} 3^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 3$	180
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 3^{\mathrm{i}}$	$91.3(2)$		

Symmetry code: (i) $-x, 1-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1^{\mathrm{i}}$	0.90	1.78	$2.682(6)$	175
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~S} 1^{\mathrm{ii}}$	0.90	2.44	$3.336(6)$	173

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $-x, 2-y,-z$.

The ratio of observed to unique reflections is low (45%), probably because of the poor diffraction quality of the crystal. All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with distances $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.90 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are generated by the symmetry operation $(-x, 1-y$, $-z)$. H atoms are represented by small spheres.

Figure 2
The crystal packing of (I), viewed along the b axis.

The authors thank Hexi University for funding this study.

References

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Billson, T. S., Crane, J. D., Fox, O. D. \& Heath, S. L. (2000). Inorg. Chem. Comтй. 3, 718-720.
Fritsky, I. O., Ott, R., Pritzkow, H. \& Krämer, R. (2003). Inorg. Chim. Acta, 346, 111-118.
Kotera, T., Fujita, A., Mikuriya, M., Tsutsumi, H. \& Handa, M. (2003). Inorg. Chem. Commun. 6, 322-324.
Nie, Y. (2004). Acta Cryst. E60, m1319-m1320.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany;
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

